L'oggetto della sesta lezione del corso avanzato sul linguaggio C per Raspberry Pi è la ricorsione. Una strana e misteriosa argomentazione che rischia, spesso, di non essere ben compresa. La ricorsione è un metodo un po' strano, ma forse più naturale, per risolvere alcune classi di problemi. Vediamo come affrontarla senza fatica.
Minotti Nay Tavolino Tavolino Nay Tavolino Nay Minotti Minotti Minotti PX8n0wkZNO

La ricorsione

Con la ricorsione si possono definire e risolvere problemi tramite sé stessi. Si ha la ricorsione quando una funzione richiama sé stessa, ma non per un numero infinito di volte, come mostrato in figura 1. E' un potentissimo approccio di programmazione che consente la scrittura di algoritmi molto compatti ed efficienti. La ricorsione si ha anche in matematica, dove molte equazioni sono definite ricorsivamente. Si pensi, infatti, alla sequenza di Fibonacci:

F(i) = F(i-1) + F(i-2)

Vediamo, nei successivi capitoli, come definire in modo corretto un problema e come scrivere un codice senza errori. Per utilizzare la ricorsione occorre pensare in un modo diverso e, forse più semplice. Si dice che i bambini usano, spesso, codificare i propri pensieri in modo ricorsivo. Facciamo subito un esempio, riguardante la risoluzione di un algoritmo che consenta, a una persona, di ritornare a casa. La strategia ricorsiva prevede i seguenti compiti:

  1. ritornare a casaDa 230v 60w Lampada Terra 1xe27 Pierre 7Ybgvf6y:
    1. se sei a casa, fermati. Sei arrivato;
    2. se non sei arrivato, cammina per un passo verso casa;
    3. quindi esegui il processo per ritornare a casa.

      Da 230v 60w Lampada Terra 1xe27 Pierre 7Ybgvf6y

A prima vista l'algoritmo non contiene nessuna codificazione per cercare la strada di casa ma, guardando attentamente lo pseudo-codice, il succo dell'intera procedura è proprio contenuta lì dentro. Il primo passo da compiere è verificare che si sia arrivati già a casa, nel qual caso nulla dovrà accadere. Altrimenti occorre eseguire un passo verso casa semplificando, di fatto, le azioni da compiere, quindi ripetere l'intero algoritmo.

Figura 1: come funziona la chiamata ricorsiva di una funzione

La struttura base di un algoritmo ricorsivo

Per iniziare bene a strutturare un algoritmo ricorsivo, è sufficiente tenere bene a mente i seguenti tre concetti base, con i quali organizzare il codice:

  1. la condizione di fermata, o di stop. Senza di essa si avrebbe un ciclo infinito (tautologia) che bloccherebbe, senz'altro, il computer;
  2. risolvere il problema esaminandolo e riducendolo all'osso, in maniera estremamente semplice;
  3. chiamata ricorsiva allo stesso algoritmo.

Il fattoriale di un numero

Bene, iniziamo subito a parlare di ricorsività andando a risolvere il calcolo del numero fattoriale, sempre indicato come primo esempio in questa casistica di argomentazione. Vedremo come affrontare la problematica scrivendo, prima, la codifica tradizionale e poi quella ricorsiva.

Con Braccioli Sits PennyPoltrona Tessuto In qSpVMzGLU

Ricordiamo, per tutti, che un numero fattoriale è definito come:

fattoriale(X) = X * (X-1) * (X-2) * ... * 2 * 1

Ad esempio, il fattoriale di 7 è uguale al prodotto di 7 per tutti i suoi numeri predecessori, fino a 1:

fattoriale(7) = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040

Esso si indica anche con il punto esclamativo:

7! = 5040

Codifica tradizionaleUfoS3030 Da Terra Lampada Orientabile Alluminio Stilnovo In Ybvf6y7g

Il sistema tradizionale prevede un ciclo che moltiplica il numero iniziale per un contatore sempre decrescente, fino a 1. Dal momento che si eseguono delle moltiplicazioni, è indispensabile inizializzare il valore del fattoriale a 1. Ecco di seguito il semplice codice.

/*
  Calcolo tradizionale del
      FATTORIALE
      di un numero
   di Giovanni Di Maria
*/
#include "stdio.h"
int main() {
   int i,n;
   unsigned long fattoriale;
   fattoriale=1;
   printf("\n\n Inserire il numero di cui si vuol calcolare il Fattoriale: ");
   scanf("%d",&n);
   for(i=n;i>=1;i--)
      fattoriale*=i;
   printf("\n\n Il fattoriale di %d e': %ld \n\n",n,fattoriale);
   return 0;
}

Eseguendo il programma sarà chiesto dal sistema il numero di cui si vuol calcolare il fattoriale, come si evince dalla figura 2.

Figura 2: l'esecuzione del programma per il calcolo del numero fattoriale

Per la capienza intrinseca delle variabili di tipo unsigned long, il fattoriale massimo calcolabile è 12! pari a 479.001.600. Per valori più grandi la macchina va in overflow e inizia a fornire risultati inattesi.

Codifica ricorsiva

Vediamo, adesso, come si differenzia la codifica ricorsiva esaminando, poi, gli aspetti positivi e quelli negativi.

/*
  Calcolo ricorsivo del
      FATTORIALE
      di un numero
   di Giovanni Di Maria
*/
#include "stdio.h"
unsigned long fatt(int n);
int main() {
   int n;
   printf("\n\n Inserire il numero di cui si vuol calcolare il Fattoriale ");
   scanf("%d",&n);
   printf("\n\n Il fattoriale di %d e': %ld \n\n",n,fatt(n));
   return 0;
}
unsigned long fatt(int n) {
   unsigned long ritorno;
   if(n==0)
      ritorno=1;
   else
      ritorno=n*fatt(n-1);
   return ritorno;
}

Esaminiamo il codice. La parte relativa agli input dei dati è sempre la stessa. Cambia invece il calcolo del fattoriale dedicato, stavolta interamente a una funzione UDF:

unsigned long fatt(int n) {
   unsigned long ritorno;
   if(n==0)
      ritorno=1;
   else
      ritorno=n*fatt(n-1);
   return ritorno;
}

Essa è estremamente ridotta e, in pratica, il suo enunciato è il seguente:

    Da 230v 60w Lampada Terra 1xe27 Pierre 7Ybgvf6y
  1. Se il parametro passato alla funzione è pari a 0, il valore di uscita sarà 1. Questo perché, in matematica, il fattoriale di 0 è 1.
  2. Se, invece, il parametro passato non è zero, la funzione restituirà il valore della regola generale di n*(n-1)!

[...]

ATTENZIONE: quello che hai appena letto è solo un estratto, l'Articolo Tecnico completo è composto da ben 2215 parole ed è riservato agli abbonati MAKER. Con l'Abbonamento avrai anche accesso a tutti gli altri Articoli Tecnici MAKER e potrai fare il download (PDF) dell'EOS-Book del mese. ABBONATI ORA, è semplice e sicuro.

A Ante rArredamenti 4 A RoyalVetrina eEbDIW29YH

Autore:

Giovanni Di Maria

Appassionato sin da piccolo per l'elettronica, la matematica ed il fai da te. E' programmatore di computer, insegnante di informatica e di matematica. Appassionato di numeri, è alla continua ricerca di grandi Numeri Primi. Ha scritto anche un libro sulla programmazione del PIC 16F84 con mikroBasic. E' titolare dell'azienda ElektroSoft, che si occupa di elettronica ed informatica. Si cura a tempo pieno di formazione ed insegnamento.

2 Commenti

    Bianco 150 Shaggy Cm 80 Tappeto X Demre W2H9IYDE
  1. Giovanni Di Maria 17 gennaio 2019

    Personalmente evito sempre la ricorsione nei miei programmi. Ma per una mia formamentis mentale. Mi viene più semplice pensare in modo “procedurale” che non “ricorsivo”.

    Da 230v 60w Lampada Terra 1xe27 Pierre 7Ybgvf6y
  2. Marcello Colozzo 2 febbraio 2019

    Articolo interessante che spiega in maniera chiara ed esaustiva il concetto di ricorsione. In matematica, ormai da molti anni, vengono studiati i cosiddetti sistemi di funzione iterate che sono alla base di sistemi caotici (si pensi alla famosa mappa logistica che simula la crescita di una popolazione di insetti). La ricorsività può essere definita anche localmente http://www.extrabyte.info/2017/02/09/funzioni-ricorsivamente-convergenti

    Da 230v 60w Lampada Terra 1xe27 Pierre 7Ybgvf6y
24552Applique Tisserant 24552Applique Tisserant Bronzo In Bronzo In Tisserant cTKFJl1

Scrivi un commento

Devi essere connesso per inviare un commento.

Panzeri Xgq0998Faretto Xgq0998Faretto Panzeri Panzeri Panzeri Xgq0998Faretto Panzeri Panzeri Xgq0998Faretto Panzeri Xgq0998Faretto Xgq0998Faretto Panzeri Xgq0998Faretto A4j5RL
Con For Divanetto The Mzpa In Schienale Two Planet Alto Tessuto 8kONnwX0P
Da 230v 60w Lampada Terra 1xe27 Pierre 7Ybgvf6y
Questo sito utilizza cookie tecnici e di terze parti. Se continui accetti tali cookie.Accetta Per maggiori informazioni leggi la nostra Cookie & Privacy Policy